skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stewart, Craig"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Yoshizawa, Go (Ed.)
    PurposeThe purpose of this article is to investigate particular aspects of the STEM job market in the US. In particular, we ask: could the possession of high performance computing (HPC) skills enhance the chances of a person getting a job and/or increase starting salaries for people receiving an undergraduate or graduate degree and entering the technical workforce (rather than academia)? We also estimate the value to the US economy of practical experience offered to US students through training about HPC and the opportunity to use HPC systems funded by the National Science Foundation (NSF) and accessible nationally. MethodsInterviews and surveys of employers of graduates in STEM fields were used to gauge demand for STEM graduates with practical HPC experience and the salary increase that can be associated with the possession of such skills. We used data from the XSEDE project to determine how many undergraduate and graduate students it enabled to acquire practical proficiency with HPC. ResultsPeople with such skills who had completed an undergraduate or graduate degree received an initial median hiring salary of approximately 7%–15% more than those with the same degrees who did not possess such skills. XSEDE added approximately $10 million or more per year to the US economy through the practical educational opportunities it offered. DiscussionPractical hands-on experience provided by the US federal government, as well as many universities and colleges in the US, holds value for students as they enter the workforce. ConclusionPractical training in HPC during the course of undergraduate and graduate programs has the potential to produce positive individual labor market outcomes (i.e., salary boosts, signing bonuses) as well as to help address the shortage of STEM workers in the private sector of the US. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026
  2. Challenge or problem-based learning help students develop deeper content understanding and enhanced STEM skillsets and provide opportunities for learning across multiple contexts. Educational interventions that include active learning, mentoring, and role modeling are particularly important in recruiting and retaining female and minority students in STEM. With this framework in mind, we implemented the Vertically-Integrated Projects (VIP) model at a public urban research university in the 2022-2023 academic year with the goal of helping participating students increase engineering and STEM identity and other psychosocial outcomes. This paper reports the results from the first year of our VIP program. At the beginning and end of the academic year, participants completed measures of engineering identity; engineering self-efficacy; engineering mindset; intention to remain in the engineering major; intention to have a career in engineering; and STEM professional identity. Wilcoxon Signed Ranks (N=10) tests showed no statistically significant differences on any of these measures. Participants also responded to 20 items assessing their perceptions of their level of knowledge and skills in a variety of areas relevant to their experience in the VIP program. Wilcoxon Signed Ranks tests (N=10) revealed some statistically significant differences between pre- and post-test. Specifically, students tended to see themselves as having greater knowledge or skills in planning a long-term project, communicating technical concepts and designs to others, designing systems, components, or processes to meet practical or applied needs, understanding computer hardware and systems, working on a multidisciplinary team, and making ethical decisions in engineering/research. Finally, at the end of the Spring semester, participants rated the extent to which they perceived the VIP program helped them to develop their skills on the same 20 items. Most participants believed the VIP program helped them to develop each skill either somewhat or a great deal. Overall, while participation in the VIP program did not influence student engineering identity, self-efficacy, mindset, or major/career intentions, it was associated with increased self-perceived abilities on six specific skills. Additionally, most participants agreed that the VIP program helped them develop 20 skills at least “somewhat.” 
    more » « less
  3. Abstract Beneath Antarctica’s ice sheets, a little-observed network of liquid water connects vast landscapes and contributes to the motion of the overriding ice. When this subglacial water reaches the ocean cavity beneath ice shelves, it mixes with seawater, amplifying melt and in places forming deep channels in the base of the ice. Here we present observations from a hot-water-drilled borehole documenting subglacial water entering the ocean cavity at the grounding zone of Kamb Ice Stream and the Ross Ice Shelf. Our observations show that melt has removed approximately a third of the ice thickness, yet measurements reveal low rates of subglacial discharge in a turbid plume. Sediment cored from the channel floor shows larger discharge events occur and episodically deposit material from distinct geological domains. We quantify subglacial discharge and link our observations to the catchment upstream. We conclude that discrete discharge events are likely to dominate channel melt and sediment transport and result in the extensive ice-shelf features downstream of Kamb Ice Stream. 
    more » « less
    Free, publicly-accessible full text available May 1, 2026
  4. Underproduction, low retention, and lack of diversity in STEM disciplines, especially engineering, are significant challenges nationally, but are particularly acute in regions, both urban and rural, where educational access is limited. Leveraging our institutional location at a public urban research university in a city marked by its connection to its rural surroundings, we seek to address these challenges by implementing the Vertically Integrated Projects (VIP) model at our university with the support of an NSF IUSE grant. The VIP model is based on active learning and enables tiered mentoring from students at all academic years, thereby providing the opportunity of role modeling from upper-level undergraduate and graduate students as well as faculty. In addition, programs based on the VIP model are accessible to all students (not just high performing students) and provide a meaningful networking environment. We use our implementation of the VIP model to foster STEM identity growth and a sense of belonging, while increasing and celebrating diversity in engineering and other STEM disciplines. Our VIP program leverages best practices from the well-established VIP model and adapts it to address unique aspects of our university’s community and interests. Specifically, the program includes freshmen and will also serve as a recruitment tool for local community college students. It employs a tiered mentoring approach and activities that prepare students for research and foster networking. The long-term goal of the VIP experience is to create a research culture and community in engineering and eventually across STEM disciplines that is inclusive and supportive of students from diverse backgrounds. An additional focus is to showcase the value of diversity in research and innovation through the program. Both the research culture and increased acknowledgement of the value of diversity are designed to enhance students’ STEM identity, which is important for retention in the major and career. The purpose of this paper is to report on the planning and launch of our VIP program in Fall 2022, focusing on the PIs’ experiences implementing the program and on our first cohort’s (N = 12; 7 women; 4 Black/African American; 2 Hispanic) experiences participating in the program during their first semester. Specifically, this paper will describe the challenges and opportunities of implementing the VIP program and how the VIP model has been adapted to align with unique aspects of our institution and student body. We will also report preliminary analyses of student journal data collected from the first cohort throughout the Fall semester, where students described their initial expectations/hopes and concerns for the semester; their activities and emotional responses during the semester; and finally, their reflections on their experiences, positive or negative, throughout the semester. The paper will conclude by offering lessons learned from the first year of this project as well as directions for moving forward. 
    more » « less
  5. null (Ed.)
    Education and psychology research has established STEM (science, technology, engineering, and mathematics) identities as an important factor in explaining student persistence in STEM fields. Few studies in social psychology of language or communication have investigated STEM identities, despite the fundamentally communicative nature of identity. Identity talk produced in semi-structured interviews with undergraduate engineering majors ( N = 16) at three U.S. universities was analyzed qualitatively using the Communication Theory of Identity (CTI) as a sensitizing framework. The analysis showed that these students’ STEM identities emphasized personal attributes such as work ethic and a desire to make a positive difference in the world as well as relationships with peers in engineering. A number of potential identity gaps which might present barriers to forming a STEM identity were also evident in the data. These results underscore the importance of a communicative (interactive and relational) perspective in understanding students’ development and expression of STEM identities. 
    more » « less
  6. null (Ed.)
  7. The landscape of research in science and engineering is heavily reliant on computation and data processing. There is continued and expanded usage by disciplines that have historically used advanced computing resources, new usage by disciplines that have not traditionally used HPC, and new modalities of the usage in Data Science, Machine Learning, and other areas of AI. Along with these new patterns have come new advanced computing resource methods and approaches, including the availability of commercial cloud resources. The Coalition for Academic Scientific Computation (CASC) has long been an advocate representing the needs of academic researchers using computational resources, sharing best practices and offering advice to create a national cyberinfrastructure to meet US science, engineering, and other academic computing needs. CASC has completed the first of what we intend to be an annual survey of academic cloud and data center usage and practices in analyzing return on investment in cyberinfrastructure. Critically important findings from this first survey include the following: many of the respondents are engaged in some form of analysis of return in research computing investments, but only a minority currently report the results of such analyses to their upper-level administration. Most respondents are experimenting with use of commercial cloud resources but no respondent indicated that they have found use of commercial cloud services to create financial benefits compared to their current methods. There is clear correlation between levels of investment in research cyberinfrastructure and the scale of both cpu core-hours delivered and the financial level of supported research grants. Also interesting is that almost every respondent indicated that they participate in some sort of national cooperative or nationally provided research computing infrastructure project and most were involved in academic computing-related organizations, indicating a high degree of engagement by institutions of higher education in building and maintaining national research computing ecosystems. Institutions continue to evaluate cloud-based HPC service models, despite having generally concluded that so far cloud HPC is too expensive to use compared to their current methods. 
    more » « less
  8. The Urban STEM Collaboratory is a tri-institution collaboration of (school 1), (school 2), and (school 3). Each of the three partner universities is embedded in a large city, and serve similar student populations, i.e. students who tend to be first generation, minorities, older, and/or commuting to campus. These universities encounter similar challenges in first-year retention and graduation rates, especially in the STEM disciplines. As they strive to improve the first year engineering and/or mathematics student experience at their campuses, they have engaged in different approaches; including Peer Led Team Learning (PLTL), formation of an Engineering Learning Community (ELC), and engaging students in outreach as STEM Ambassadors. Incorporating these individual strengths with new activities that will be shared across institutions, the team is currently embarking on a multi-year research project to uncover how students develop STEM identity in an urban context, identify interventions that support this development, and determine the impact that STEM identity has on student success. Through the support of an NSF S-STEM grant, the three universities are also providing scholarships to students engaged in the project. Here, we share the initial efforts of our tri-campus interaction and collaboration, our overarching goals, our systems of recruiting students, and our initial collection of preliminary data and findings for Year 1. 
    more » « less